Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(6): 104812, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37172724

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is one of the deadliest and most aggressive hematological malignancies, but its pathological mechanism in controlling cell survival is not fully understood. Oculocerebrorenal syndrome of Lowe is a rare X-linked recessive disorder characterized by cataracts, intellectual disability, and proteinuria. This disease has been shown to be caused by mutation of oculocerebrorenal syndrome of Lowe 1 (OCRL1; OCRL), encoding a phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] 5-phosphatase involved in regulating membrane trafficking; however, its function in cancer cells is unclear. Here, we uncovered that OCRL1 is overexpressed in T-ALL cells, and knockdown of OCRL1 results in cell death, indicating the essential role of OCRL in controlling T-ALL cell survival. We show OCRL is primarily localized in the Golgi and can translocate to plasma membrane (PM) upon ligand stimulation. We found OCRL interacts with oxysterol-binding protein-related protein 4L, which facilitates OCRL translocation from the Golgi to the PM upon cluster of differentiation 3 stimulation. Thus, OCRL represses the activity of oxysterol-binding protein-related protein 4L to prevent excessive PI(4,5)P2 hydrolysis by phosphoinositide phospholipase C ß3 and uncontrolled Ca2+ release from the endoplasmic reticulum. We propose OCRL1 deletion leads to accumulation of PI(4,5)P2 in the PM, disrupting the normal Ca2+ oscillation pattern in the cytosol and leading to mitochondrial Ca2+ overloading, ultimately causing T-ALL cell mitochondrial dysfunction and cell death. These results highlight a critical role for OCRL in maintaining moderate PI(4,5)P2 availability in T-ALL cells. Our findings also raise the possibility of targeting OCRL1 to treat T-ALL disease.


Assuntos
Membrana Celular , Fosfatidilinositol 4,5-Difosfato , Monoéster Fosfórico Hidrolases , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Linfócitos T , Humanos , Membrana Celular/metabolismo , Sobrevivência Celular , Hidrólise , Síndrome Oculocerebrorrenal/enzimologia , Síndrome Oculocerebrorrenal/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Linfócitos T/citologia , Linfócitos T/imunologia , Monoéster Fosfórico Hidrolases/biossíntese , Monoéster Fosfórico Hidrolases/deficiência , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Complexo de Golgi/metabolismo , Ligantes , Transporte Proteico , Sinalização do Cálcio , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Citosol/metabolismo
2.
Hum Mol Genet ; 30(3-4): 198-212, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33517444

RESUMO

Lowe Syndrome (LS) is a lethal genetic disorder caused by mutations in the OCRL1 gene which encodes the lipid 5' phosphatase Ocrl1. Patients exhibit a characteristic triad of symptoms including eye, brain and kidney abnormalities with renal failure as the most common cause of premature death. Over 200 OCRL1 mutations have been identified in LS, but their specific impact on cellular processes is unknown. Despite observations of heterogeneity in patient symptom severity, there is little understanding of the correlation between genotype and its impact on phenotype. Here, we show that different mutations had diverse effects on protein localization and on triggering LS cellular phenotypes. In addition, some mutations affecting specific domains imparted unique characteristics to the resulting mutated protein. We also propose that certain mutations conformationally affect the 5'-phosphatase domain of the protein, resulting in loss of enzymatic activity and causing common and specific phenotypes (a conformational disease scenario). This study is the first to show the differential effect of patient 5'-phosphatase mutations on cellular phenotypes and introduces a conformational disease component in LS. This work provides a framework that explains symptom heterogeneity and can help stratify patients as well as to produce a more accurate prognosis depending on the nature and location of the mutation within the OCRL1 gene.


Assuntos
Modelos Moleculares , Mutação , Síndrome Oculocerebrorrenal/enzimologia , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Linhagem Celular , Simulação por Computador , Células HEK293 , Humanos , Síndrome Oculocerebrorrenal/genética , Fenótipo , Conformação Proteica , Transporte Proteico
3.
CEN Case Rep ; 9(2): 95-100, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31707643

RESUMO

The oculocerebrorenal disorder of Lowe syndrome is an X-linked mutation in the gene oculocerebrorenal syndrome of Lowe 1 (OCRL), characterized by the triad of congenital cataracts, severe intellectual impairment, and renal tubular dysfunction. Manifestations of phenotype in female carriers and patients are extremely rare. We present a female case with congenital cataracts, severe intellectual impairment, sensorineural hearing loss, and renal tubular dysfunction as Lowe syndrome. A 9-year-old Japanese girl visited our hospital due to prolonged proteinuria. Her renal biopsy revealed diffuse mesangium proliferation, sclerosis and dilatation of renal tubules, and mild IgA deposition in the mesangial region. Furthermore, she had congenital cataracts, severe intellectual impairment, and sensorineural hearing loss. Genetic screening did not identify mutations of the ORCL gene encoding inositol polyphosphate 5-phosphatase (IPP-5P) (46 XX, female). However, we found the reduction of enzyme activity of IPP-5P to 50% of the normal value. Furthermore, her renal function had deteriorated to renal failure within a decade. Finally, she received peritoneal dialysis and renal transplantation. We present the oculocerebrorenal phenotype of Lowe syndrome in a female patient with reduced activity of IPP-5P without OCRL gene mutation.


Assuntos
Inositol Polifosfato 5-Fosfatases/metabolismo , Síndrome Oculocerebrorrenal/diagnóstico , Síndrome Oculocerebrorrenal/genética , Insuficiência Renal/terapia , Povo Asiático/etnologia , Povo Asiático/genética , Catarata/congênito , Criança , Progressão da Doença , Feminino , Glomerulonefrite por IGA/complicações , Perda Auditiva Neurossensorial/congênito , Humanos , Deficiência Intelectual/diagnóstico , Transplante de Rim/métodos , Túbulos Renais Proximais/patologia , Mutação , Síndrome Oculocerebrorrenal/enzimologia , Diálise Peritoneal/métodos , Fenótipo , Proteinúria/diagnóstico , Proteinúria/etiologia , Índice de Gravidade de Doença
4.
Curr Biol ; 26(1): 120-8, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26725203

RESUMO

Phosphoinositide (PtdIns) homeostasis requires a tight spatial and temporal regulation during the endocytic process [1]. Indeed, PtdIns(4,5)P2 plays a crucial role in endocytosis by controlling clathrin-coated pit formation, whereas its conversion into PtdIns4P right after scission of clathrin-coated vesicles (CCVs) is essential for successful uncoating and cargo sorting [1-6]. In non-neuronal cells, endosomal PtdIns(4,5)P2 hydrolysis critically relies on the lipid phosphatase OCRL [7-9], the inactivation of which causes the Oculo-Cerebro-Renal syndrome of Lowe [10, 11]. To understand the coupling between PtdIns(4,5)P2 hydrolysis and endosome formation, a key issue is thus to unravel the mechanism by which OCRL is recruited on CCVs precisely after their scission from the plasma membrane. Here we found that the Rab35 GTPase, which plays a fundamental but poorly understood role in endosomal trafficking after cargo internalization [12-21], directly recruits the OCRL phosphatase immediately after scission of the CCVs. Consistent with Rab35 and OCRL acting together, depletion of either Rab35 or OCRL leads to retention of internalized receptors such as the endogenous cation-independent mannose-6-phosphate receptor (CI-MPR) in peripheral clathrin-positive endosomes that display abnormal association with PtdIns(4,5)P2- and actin-binding proteins. Remarkably, Rab35 loading on CCVs rapidly follows the recruitment of the AP2-binding Rab35 GEF/activator DENND1A (connecdenn 1) and the disappearance of the Rab35 GAP/inhibitor EPI64B. We propose that the precise spatial and temporal activation of Rab35 acts as a major switch for OCRL recruitment on newborn endosomes, post-scission PtdIns(4,5)P2 hydrolysis, and subsequent endosomal trafficking.


Assuntos
Endossomos/metabolismo , Síndrome Oculocerebrorrenal/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Clatrina/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Invaginações Revestidas da Membrana Celular/metabolismo , Endocitose , Células HEK293 , Células HeLa , Humanos , Proteínas dos Microfilamentos/metabolismo , Síndrome Oculocerebrorrenal/enzimologia , Transporte Proteico , Receptor IGF Tipo 2/metabolismo
5.
Biochim Biophys Acta ; 1851(6): 698-710, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25264170

RESUMO

Phosphoinositides (PIs) are a group of key signaling and structural lipid molecules involved in a myriad of cellular processes. PI phosphatases, together with PI kinases, are responsible for the conversion of PIs between distinctive phosphorylation states. PI phosphatases are a large collection of enzymes that are evolved from at least two disparate ancestors. One group is distantly related to endonucleases, which apply divalent metal ions for phosphoryl transfer. The other group is related to protein tyrosine phosphatases, which contain a highly conserved active site motif Cys-X5-Arg (CX5R). In this review, we focus on structural insights to illustrate current understandings of the molecular mechanisms of each PI phosphatase family, with emphasis on their structural basis for substrate specificity determinants and catalytic mechanisms. This article is part of a Special Issue entitled Phosphoinositides.


Assuntos
Proteínas de Bactérias/química , Proteínas de Membrana/química , PTEN Fosfo-Hidrolase/química , Monoéster Fosfórico Hidrolases/química , Proteínas Tirosina Fosfatases não Receptoras/química , Bactérias/química , Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Biocatálise , Membrana Celular/química , Membrana Celular/metabolismo , Cristalografia por Raios X , Doenças Genéticas Ligadas ao Cromossomo X/enzimologia , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Inositol Polifosfato 5-Fosfatases , Isoenzimas/química , Isoenzimas/metabolismo , Proteínas de Membrana/metabolismo , Modelos Moleculares , Nefrolitíase/enzimologia , Nefrolitíase/genética , Nefrolitíase/patologia , Síndrome Oculocerebrorrenal/enzimologia , Síndrome Oculocerebrorrenal/genética , Síndrome Oculocerebrorrenal/patologia , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Especificidade por Substrato
6.
Pediatr Nephrol ; 29(11): 2127-32, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24912603

RESUMO

BACKGROUND: Dent disease, an X-linked recessive renal tubulopathy, is caused by mutations in either CLCN5 (Dent disease 1) or OCRL (Dent disease 2). OCRL mutations can also cause Lowe syndrome. In some cases it is difficult to differentiate Dent disease 1 and 2 on the basis of clinical features only without genetic tests. Several studies have shown differences in serum levels of muscle enzymes between these diseases. The aim of our study was to test the validity of these findings. METHODS: In total, 23 patients with Dent disease 1 (Group A), five patients with Dent disease 2 (Group B) and 19 patients with Lowe syndrome (Group C) were enrolled in our study. The serum levels of three muscle enzymes [creatine phosphokinase (CPK), lactate dehydrogenase (LDH), aspartate aminotransferase (AST)], were measured. The levels of a hepatic enzyme, alanine aminotransferase (ALT), were also measured as a control. RESULTS: One patient in Group B had muscle hypoplasia of both upper extremities. The serum levels of all three muscle enzymes assayed were higher in Group B or C patients than in Group A patients. Serum ALT levels were normal in all three groups of patients. CONCLUSIONS: The serum levels of muscle enzymes in patients with Dent disease can be used as a biomarker to predict genotypes, even though the patients do not have clinical symptoms of muscle involvement.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X/enzimologia , Músculo Esquelético/enzimologia , Nefrolitíase/enzimologia , Adolescente , Aspartato Aminotransferases/metabolismo , Biomarcadores , Criança , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Creatina Quinase/metabolismo , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Genótipo , Humanos , L-Lactato Desidrogenase/metabolismo , Fígado/enzimologia , Masculino , Músculo Esquelético/patologia , Nefrolitíase/genética , Nefrolitíase/patologia , Síndrome Oculocerebrorrenal/enzimologia , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo
7.
Am J Physiol Cell Physiol ; 302(10): C1479-91, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22378746

RESUMO

Oculocerebrorenal syndrome of Lowe (OCRL) gene product is a phosphatidyl inositol 4,5-bisphosphate [PI(4,5)P(2)] 5-phosphatase, and mutations of OCRL cause Lowe syndrome and Dent disease, both of which are frequently associated with hypercalciuria. Transient receptor potential, vanilloid subfamily, subtype 6 (TRPV6) is an intestinal epithelial Ca(2+) channel mediating active Ca(2+) absorption. Hyperabsorption of Ca(2+) was found in patients of Dent disease with increased Ca(2+) excretion. In this study, we tested whether TRPV6 is regulated by OCRL and, if so, to what extent it is altered by Dent-causing OCRL mutations using Xenopus laevis oocyte expression system. Exogenous OCRL decreased TRPV6-mediated Ca(2+) uptake by regulating the function and trafficking of TRPV6 through different domains of OCRL. The PI(4,5)P(2) 5-phosphatase domain suppressed the TRPV6-mediated Ca(2+) transport likely through regulating the PI(4,5)P(2) level needed for TRPV6 function without affecting TRPV6 protein abundance of TRPV6 at the cell surface. The forward trafficking of TRPV6 was decreased by OCRL. The Rab binding domain in OCRL was involved in regulating the trafficking of TRPV6. Knocking down endogenous X. laevis OCRL by antisense approach increased TRPV6-mediated Ca(2+) transport and TRPV6 forward trafficking. All seven Dent-causing OCRL mutations examined exhibited alleviation of the inhibitory effect on TRPV6-mediated Ca(2+) transport together with decreased overall PI(4,5)P(2) 5-phosphatase activity. In conclusion, OCRL suppresses TRPV6 via two separate mechanisms. The disruption of PI(4,5)P(2) 5-phosphatase activity by Dent-causing mutations of OCRL may lead to increased intestinal Ca(2+) absorption and, in turn, hypercalciuria.


Assuntos
Cálcio/metabolismo , Doença de Dent/metabolismo , Mucosa Intestinal/metabolismo , Síndrome Oculocerebrorrenal/metabolismo , Monoéster Fosfórico Hidrolases/fisiologia , Canais de Cátion TRPV/antagonistas & inibidores , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Doença de Dent/enzimologia , Doença de Dent/genética , Feminino , Técnicas de Silenciamento de Genes/métodos , Mucosa Intestinal/enzimologia , Mucosa Intestinal/patologia , Síndrome Oculocerebrorrenal/enzimologia , Síndrome Oculocerebrorrenal/genética , Fosfatidato Fosfatase/genética , Fosfatidato Fosfatase/fisiologia , Monoéster Fosfórico Hidrolases/genética , Ligação Proteica/genética , Transporte Proteico/genética , Ratos , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Xenopus laevis
8.
Subcell Biochem ; 58: 215-79, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22403078

RESUMO

Phosphoinositide phosphatases comprise several large enzyme families with over 35 mammalian enzymes identified to date that degrade many phosphoinositide signals. Growth factor or insulin stimulation activates the phosphoinositide 3-kinase that phosphorylates phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P(2)] to form phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)], which is rapidly dephosphorylated either by PTEN (phosphatase and tensin homologue deleted on chromosome 10) to PtdIns(4,5)P(2), or by the 5-phosphatases (inositol polyphosphate 5-phosphatases), generating PtdIns(3,4)P(2). 5-phosphatases also hydrolyze PtdIns(4,5)P(2) forming PtdIns(4)P. Ten mammalian 5-phosphatases have been identified, which regulate hematopoietic cell proliferation, synaptic vesicle recycling, insulin signaling, and embryonic development. Two 5-phosphatase genes, OCRL and INPP5E are mutated in Lowe and Joubert syndrome respectively. SHIP [SH2 (Src homology 2)-domain inositol phosphatase] 2, and SKIP (skeletal muscle- and kidney-enriched inositol phosphatase) negatively regulate insulin signaling and glucose homeostasis. SHIP2 polymorphisms are associated with a predisposition to insulin resistance. SHIP1 controls hematopoietic cell proliferation and is mutated in some leukemias. The inositol polyphosphate 4-phosphatases, INPP4A and INPP4B degrade PtdIns(3,4)P(2) to PtdIns(3)P and regulate neuroexcitatory cell death, or act as a tumor suppressor in breast cancer respectively. The Sac phosphatases degrade multiple phosphoinositides, such as PtdIns(3)P, PtdIns(4)P, PtdIns(5)P and PtdIns(3,5)P(2) to form PtdIns. Mutation in the Sac phosphatase gene, FIG4, leads to a degenerative neuropathy. Therefore the phosphatases, like the lipid kinases, play major roles in regulating cellular functions and their mutation or altered expression leads to many human diseases.


Assuntos
Neoplasias da Mama/enzimologia , Leucemia/enzimologia , Síndrome Oculocerebrorrenal/enzimologia , PTEN Fosfo-Hidrolase/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Diglicerídeos/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Inositol Polifosfato 5-Fosfatases , Leucemia/genética , Leucemia/patologia , Síndrome Oculocerebrorrenal/genética , Síndrome Oculocerebrorrenal/patologia , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Monoéster Fosfórico Hidrolases/genética , Sistemas do Segundo Mensageiro
9.
Mol Biol Cell ; 22(5): 606-23, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21233288

RESUMO

Mutation of the inositol polyphosphate 5-phosphatase OCRL1 results in two disorders in humans, namely Lowe syndrome (characterized by ocular, nervous system, and renal defects) and type 2 Dent disease (in which only the renal symptoms are evident). The disease mechanisms of these syndromes are poorly understood. Here we identify two novel OCRL1-binding proteins, termed inositol polyphosphate phosphatase interacting protein of 27 kDa (IPIP27)A and B (also known as Ses1 and 2), that also bind the related 5-phosphatase Inpp5b. The IPIPs bind to the C-terminal region of these phosphatases via a conserved motif similar to that found in the signaling protein APPL1. IPIP27A and B, which form homo- and heterodimers, localize to early and recycling endosomes and the trans-Golgi network (TGN). The IPIPs are required for receptor recycling from endosomes, both to the TGN and to the plasma membrane. Our results identify IPIP27A and B as key players in endocytic trafficking and strongly suggest that defects in this process are responsible for the pathology of Lowe syndrome and Dent disease.


Assuntos
Endocitose , Monoéster Fosfórico Hidrolases/metabolismo , Receptores da Transferrina/metabolismo , Via Secretória , Proteínas de Transporte Vesicular/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Membrana Celular/metabolismo , Sequência Conservada/genética , Endossomos/metabolismo , Células HeLa , Humanos , Hidrolases/metabolismo , Lisossomos/enzimologia , Dados de Sequência Molecular , Mutação/genética , Síndrome Oculocerebrorrenal/enzimologia , Síndrome Oculocerebrorrenal/genética , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Toxina Shiga/metabolismo , Proteínas de Transporte Vesicular/química , Rede trans-Golgi/metabolismo
10.
Mamm Genome ; 21(9-10): 458-66, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20872266

RESUMO

The oculocerebrorenal syndrome of Lowe (OCRL; MIM #309000) is an X-linked human disorder characterized by congenital cataracts, mental retardation, and renal proximal tubular dysfunction caused by loss-of-function mutations in the OCRL gene that encodes Ocrl, a type II phosphatidylinositol bisphosphate (PtdIns4,5P(2)) 5-phosphatase. In contrast, mice with complete loss-of-function of the highly homologous ortholog Ocrl have no detectable renal, ophthalmological, or central nervous system abnormalities. We inferred that the disparate phenotype between Ocrl-deficient humans and mice was likely due to differences in how the two species compensate for loss of the Ocrl enzyme. We therefore turned our attention to Inpp5b, another type II PtdIns4,5P(2) 5-phosphatase encoded by Inpp5b in mice and INPP5B in humans, as potential compensating genes in the two species, because Inpp5b/INPP5B are the most highly conserved paralogs to Ocrl/OCRL in the respective genomes of both species and Inpp5b demonstrates functional overlap with Ocrl in mice in vivo. We used in silico sequence analysis, reverse-transcription PCR, quantitative PCR, and transient transfection assays of promoter function to define splice-site usage and the function of an internal promoter in mouse Inpp5b versus human INPP5B. We found mouse Inpp5b and human INPP5B differ in their transcription, splicing, and primary amino acid sequence. These observations form the foundation for analyzing the functional basis for the difference in how Inpp5b and INPP5B compensate for loss of Ocrl function and, by providing insight into the cellular roles of Ocrl and Inpp5b, aid in the development of a model system in which to study Lowe syndrome.


Assuntos
Expressão Gênica , Síndrome Oculocerebrorrenal/genética , Monoéster Fosfórico Hidrolases/genética , Sítios de Splice de RNA/genética , Splicing de RNA , Sequência de Aminoácidos , Animais , Northern Blotting , Modelos Animais de Doenças , Humanos , Camundongos , Dados de Sequência Molecular , Mutação , Síndrome Oculocerebrorrenal/enzimologia , Monoéster Fosfórico Hidrolases/química , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie , Transcrição Gênica
11.
Hum Mol Genet ; 18(23): 4478-91, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19700499

RESUMO

The Lowe syndrome (LS) is a life-threatening, developmental disease characterized by mental retardation, cataracts and renal failure. Although this human illness has been linked to defective function of the phosphatidylinositol 5-phosphatase, Ocrl1 (Oculo-Cerebro-Renal syndrome of Lowe protein 1), the mechanism by which this enzyme deficiency triggers the disease is not clear. Ocrl1 is known to localize mainly to the Golgi apparatus and endosomes, however it translocates to plasma membrane ruffles upon cell stimulation with growth factors. The functional implications of this inducible translocation to the plasma membrane are presently unknown. Here we show that Ocrl1 is required for proper cell migration, spreading and fluid-phase uptake in both established cell lines and human dermal fibroblasts. We found that primary fibroblasts from two patients diagnosed with LS displayed defects in these cellular processes. Importantly, these abnormalities were suppressed by expressing wild-type Ocrl1 but not by a phosphatase-deficient mutant. Interestingly, the homologous human PI-5-phosphatase, Inpp5b, was unable to complement the Ocrl1-dependent cell migration defect. Further, Ocrl1 variants that cannot bind the endocytic adaptor AP2 or clathrin, like Inpp5b, were less apt to rescue the migration phenotype. However, no defect in membrane recruitment of AP2/clathrin or in transferrin endocytosis by patient cells was detected. Collectively, our results suggest that Ocrl1, but not Inpp5b, is involved in ruffle-mediated membrane remodeling. Our results provide new elements for understanding how Ocrl1 deficiency leads to the abnormalities associated with the LS.


Assuntos
Movimento Celular , Fibroblastos/fisiologia , Síndrome Oculocerebrorrenal/enzimologia , Síndrome Oculocerebrorrenal/fisiopatologia , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Fibroblastos/enzimologia , Teste de Complementação Genética , Humanos , Camundongos , Síndrome Oculocerebrorrenal/genética , Monoéster Fosfórico Hidrolases/genética
12.
Biochem Soc Symp ; (74): 161-81, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17233589

RESUMO

Phosphoinositide signals regulate cell proliferation, differentiation, cytoskeletal rearrangement and intracellular trafficking. Hydrolysis of PtdIns(4,5)P2 and PtdIns(3,4,5)P3, by inositol polyphosphate 5-phosphatases regulates synaptic vesicle recycling (synaptojanin-1), hematopoietic cell function [SHIP1(SH2-containing inositol polyphosphate 5-phosphatase-1)], renal cell function [OCRL (oculocerebrorenal syndrome of Lowe)] and insulin signalling (SHIP2). We present here a detailed review of the characteristics of the ten mammalian 5-phosphatases. Knockout mouse phenotypes and underexpression studies are associated with significant phenotypic changes, indicating non-redundant roles, despite, in many cases, overlapping substrate specificity and tissue expression. The extraordinary complexity in the control of phosphoinositide signalling continues to be revealed.


Assuntos
Monoéster Fosfórico Hidrolases/fisiologia , Animais , Humanos , Inositol Polifosfato 5-Fosfatases , Insulina/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Isoenzimas/fisiologia , Modelos Biológicos , Síndrome Oculocerebrorrenal/enzimologia , Síndrome Oculocerebrorrenal/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Estrutura Terciária de Proteína , Vesículas Sinápticas/metabolismo
13.
IUBMB Life ; 58(8): 451-6, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16916781

RESUMO

Phosphoinositide signaling molecules control cellular growth, proliferation and differentiation, intracellular vesicle trafficking, and cytoskeletal rearrangement. The inositol polyphosphate 5-phosphatase family remove the D-5 position phosphate from PtdIns(3,4,5)P3, PtdIns(4,5)P2 and PtdIns(3,5)P2 forming PtdIns(3,4)P2, PtdIns(4)P and PtdIns(3)P respectively. This enzyme family, comprising ten mammalian members, exhibit seemingly non-redundant functions including the regulation of synaptic vesicle recycling, hematopoietic cell function and insulin signaling. Here we highlight recently established insights into the functions of two well characterized 5-phosphatases OCRL and SHIP2, which have been the subject of extensive functional studies, and the characterization of recently identified members, SKIP and PIPP, in order to highlight the diverse and complex functions of this enzyme family.


Assuntos
Fosfatidilinositóis/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Transdução de Sinais , Animais , Humanos , Inositol Polifosfato 5-Fosfatases , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Biológicos , Síndrome Oculocerebrorrenal/enzimologia , Síndrome Oculocerebrorrenal/genética , Fosfatidilinositol 3-Quinases/metabolismo , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Estrutura Terciária de Proteína
14.
Mol Genet Metab ; 89(1-2): 121-8, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16777452

RESUMO

Lowe syndrome is a rare X-linked disease characterized by congenital cataracts, defects in renal tubule cell function, and mental retardation. Mutations in the OCRL1 gene, which encodes ocrl1, a phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2)) 5-phosphatase, are the cause of Lowe syndrome. PtdIns(4,5)P(2), a substrate of ocrl1, is an important signaling molecule within the cell. OCRL1 is ubiquitously expressed and co-localizes with the trans-Golgi network (TGN) and endosomal proteins. The ocrl1 protein contains two recognizable domains, one a conserved Ptd(4,5)P(2) 5-phosphatase domain and the other with homology to Rho GTPase activating proteins (RhoGAPs). The objective of our study was to further characterize the ocrl1 RhoGAP-homology domain by analyzing the effect of two missense mutations in this domain, I751N and A780P, which were previously reported in Lowe syndrome patients. Both mutant proteins were expressed at levels similar to wild-type but their enzyme activity was reduced by 85-90%, indicating that the RhoGAP-homology domain is important for the enzymatic function of ocrl1. Study of a C-terminal region of wild-type ocrl1 containing this domain detected no GAP activity, eliminating the possibility of an effect by mutations in this domain on GTPase activation. Because members of the Arf family of small G-proteins are directly involved in (Ptd(4,5)P(2)) signaling and localize to the TGN like ocrl1, we analyzed by immunoprecipitation the interaction of ocrl1 with Arf1 and Arf6 via its RhoGAP-homology domain. Wild-type ocrl1, but not the I751N mutant protein, co-immunoprecipitated with these two Arf proteins. These results indicate that wild-type ocrl1 and Arf proteins can interact and that this interaction is disrupted by the mutation. It remains unknown whether a disrupted interaction between Arf and ocrl1 plays a role in the Lowe syndrome phenotype.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Síndrome Oculocerebrorrenal/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Ativação Enzimática , Fibroblastos/enzimologia , GTP Fosfo-Hidrolases/análise , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Imunoprecipitação , Mutação de Sentido Incorreto , Síndrome Oculocerebrorrenal/enzimologia , Monoéster Fosfórico Hidrolases/análise , Estrutura Terciária de Proteína
16.
Traffic ; 6(9): 711-9, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16101675

RESUMO

Oculocerebrorenal syndrome of Lowe (OCRL) is an X-linked disorder with the hallmark features of congenital cataracts, mental retardation and Fanconi syndrome of the kidney proximal tubules. OCRL was first described in 1952, and exactly four decades later, the gene responsible was identified and found to encode a protein highly homologous to inositol polyphosphate 5-phosphatase. This suggested that Lowe syndrome may represent an inborn error of inositol phosphate metabolism, and subsequent studies confirmed that such metabolism is indeed perturbed in Lowe syndrome cells. However, the mechanism by which loss of function of the OCRL1 protein brings about Lowe syndrome remains ill defined. In this review, I will discuss our understanding of OCRL1, including where it is localized, what it interacts with and what its possible functions might be. I will then discuss possible mechanisms by which loss of OCRL1 may bring about cellular defects that manifest themselves in the pathology of Lowe syndrome.


Assuntos
Síndrome Oculocerebrorrenal/metabolismo , Monoéster Fosfórico Hidrolases/genética , Actinas/metabolismo , Processamento Alternativo , Endossomos/metabolismo , Complexo de Golgi/enzimologia , Complexo de Golgi/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Modelos Biológicos , Mutação , Síndrome Oculocerebrorrenal/enzimologia , Síndrome Oculocerebrorrenal/genética , Síndrome Oculocerebrorrenal/patologia , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Estrutura Terciária de Proteína , Proteínas rac de Ligação ao GTP/química
17.
FEBS Lett ; 576(1-2): 9-13, 2004 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-15474001

RESUMO

The catalytic properties of the type II phosphoinositide 5-phosphatases of Lowe's oculocerebrorenal syndrome, INPP5B, Synaptojanin1, Synaptojanin2 and SKIP were analysed with respect to their substrate specificity and enzymological properties. Our data reveal that all phosphatases have unique substrate specificities as judged by their corresponding KM and VMax values. They also possessed an exclusive sensitivity towards fatty acid composition, head group phosphorylation and micellar presentation. Thus, the biological function of these enzymes will not just be determined by their corresponding regulatory domains, but will be distinctly influenced by their catalytic properties as well. This suggests that the phosphatase domains fulfil a unique catalytic function that cannot be fully compensated by other phosphatases.


Assuntos
Ácidos Graxos/química , Monoéster Fosfórico Hidrolases/classificação , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Catálise , Domínio Catalítico , Escherichia coli/genética , Humanos , Cinética , Camundongos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Síndrome Oculocerebrorrenal/enzimologia , Fosfatidilinositóis/metabolismo , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Fosforilação , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
18.
J Inherit Metab Dis ; 25(5): 411-2, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12408191

RESUMO

We report on a patient with complex IV deficiency who in later clinical course was diagnosed as a Lowe syndrome. Mitochondrial abnormalities can be present in Lowe syndrome and might lead to misdiagnosis, additionally because clinical features can be overlapping.


Assuntos
Deficiência de Citocromo-c Oxidase/diagnóstico , Síndrome Oculocerebrorrenal/enzimologia , Deficiência de Citocromo-c Oxidase/complicações , Humanos , Lactente , Masculino , Síndrome Oculocerebrorrenal/diagnóstico
19.
Am J Hum Genet ; 71(6): 1420-7, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12428211

RESUMO

Lowe syndrome is a rare X-linked disorder characterized by bilateral congenital cataracts, renal Fanconi syndrome, and mental retardation. Lowe syndrome results from mutations in the OCRL1 gene, which encodes a phosphatidylinositol 4,5 bisphosphate 5-phosphatase located in the trans-Golgi network. As a first step in identifying the link between ocrl1 deficiency and the clinical disorder, we have identified a reproducible cellular abnormality of the actin cytoskeleton in fibroblasts from patients with Lowe syndrome. The cellular abnormality is characterized by a decrease in long actin stress fibers, enhanced sensitivity to actin depolymerizing agents, and an increase in punctate F-actin staining in a distinctly anomalous distribution in the center of the cell. We also demonstrate an abnormal distribution of two actin-binding proteins, gelsolin and alpha-actinin, proteins regulated by both PIP(2) and Ca(+2) that would be expected to be altered in Lowe cells. Actin polymerization plays a key role in the formation, maintenance, and proper function of tight junctions and adherens junctions, which have been demonstrated to be critical in renal proximal tubule function, and in the differentiation of the lens. These findings point to a general mechanism to explain how this PIP(2) 5-phosphatase deficiency might produce the Lowe syndrome phenotype.


Assuntos
Actinas/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Proteínas do Tecido Nervoso/deficiência , Síndrome Oculocerebrorrenal/genética , Síndrome Oculocerebrorrenal/patologia , Monoéster Fosfórico Hidrolases/deficiência , Proteínas/genética , Actinina/análise , Biopolímeros/química , Biopolímeros/metabolismo , Citoesqueleto/enzimologia , Fibroblastos , Imunofluorescência , Gelsolina/análise , Genótipo , Humanos , Proteínas do Tecido Nervoso/genética , Síndrome Oculocerebrorrenal/enzimologia , Fenótipo , Monoéster Fosfórico Hidrolases/genética , Fibras de Estresse/química , Fibras de Estresse/metabolismo , Fibras de Estresse/patologia
20.
IUBMB Life ; 53(1): 25-36, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12018404

RESUMO

Recent studies have identified the inositol polyphosphate 5-phosphatases as a large family of signal modifying enzymes comprising 10 mammalian and 4 yeast family members. A number of investigations including gene-targeted deletion of 5-phosphatases in mice have demonstrated that these enzymes regulate many important cellular events including hematopoietic cell proliferation and activation, insulin signaling, endocytosis, and actin polymerization.


Assuntos
Monoéster Fosfórico Hidrolases/metabolismo , Animais , Sinalização do Cálcio , Marcação de Genes , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Fosfatos de Inositol/metabolismo , Inositol Polifosfato 5-Fosfatases , Insulina/metabolismo , Modelos Biológicos , Síndrome Oculocerebrorrenal/enzimologia , Síndrome Oculocerebrorrenal/genética , Monoéster Fosfórico Hidrolases/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Transdução de Sinais , Vesículas Sinápticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...